20

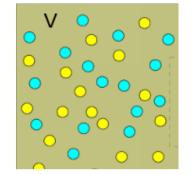
Compensation conditionnelle - synthèse

- Principales relations (jusqu'à présent):
 - 1. Mesures: $(\ell_1, \ell_2, \dots, \ell_n)$ leur modèle stochastique: $\mathbf{P} = \mathbf{Q}_{\ell\ell}^{-1}$
 - 2. Conditions: $f_k(\ell_1 v_1, \ell_2 v_2, \dots, \ell_n v_n) = 0$ $k = 1, \dots, r$
 - 3. Ecartes de fermeture: $\mathbf{w} = \mathbf{f}(\ell)$
 - 4. Les conditions linéaires (linéarisés): $\mathbf{B} = \frac{\partial f(\ell)}{\partial \ell}$
 - 5. Les résidus compensés: $\hat{\mathbf{v}} = \mathbf{Q}_{\ell\ell} \mathbf{B}^T \left(\mathbf{B} \mathbf{Q}_{\ell\ell} \mathbf{B}^T \right)^{-1} \cdot \mathbf{w}$
 - 6. Les observations compensées: $\hat{\ell} = \ell \hat{\mathbf{v}}$
 - 7. Contrôle: $\mathbf{f}(\hat{\ell}) = 0$

37

EPFL

Exo 6: Gaz parfait - avec élégance!



- Données de l'exercise précédent
- Compensation conditionelles avec 2 états $\rightarrow r = 1$

$$\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}$$
 pourquuis pas ? $P_1\cdot V_1\cdot T_2=P_2\cdot V_2\cdot T_1$

- Gaz parfait: $\check{\ell}_{P_1} \cdot \check{\ell}_{V_1} \cdot \check{\ell}_{T_2} \check{\ell}_{P_2} \cdot \check{\ell}_{V_2} \cdot \check{\ell}_{T_1} = 0$ $\hat{\ell}_{P_1} \cdot \hat{\ell}_{V_1} \cdot \hat{\ell}_{T_2} \hat{\ell}_{V_2} \cdot \hat{\ell}_{P_2} \cdot \hat{\ell}_{T_1} = 0$
- Gaz réel: $\ell_{P_1}\cdot\ell_{V_1}\cdot\ell_{T_2}-\ell_{P_2}\cdot\ell_{V_2}\cdot\ell_{T_1}=w_1$
- Gaz corrigé: $(\ell_{P_1} v_{P_1})(\ell_{V_1} v_{V_1})(\ell_{T_2} v_{T_2}) (\ell_{P_2} v_{P_2})(\ell_{V_2} v_{V_2})(\ell_{T_1} v_{T_1}) = 0$ $\underbrace{\ell_{P_1}\ell_{V_1}\ell_{T_2} \ell_{V_2}\ell_{P_2}\ell_{T_1}}_{w} + \underbrace{\ell_{V_1}\ell_{T_2}v_{P_1}}_{\partial f/\partial\ell_{P_1}} + \cdots \underbrace{\ell_{P_2}\ell_{T_1}v_{V_2}}_{\partial f/\partial\ell_{V_2}} + \underbrace{\ell_{T_1}\ell_{V_1}v_{T_2}}_{\partial f/\partial\ell_{T_2}} = 0$

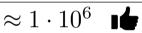
$$\mathbf{B}_{1} = \begin{bmatrix} +\ell_{V_{1}}\ell_{T_{2}} & +\ell_{P_{1}}\ell_{T_{2}} & -\ell_{P_{2}}\ell_{V_{2}} - \ell_{V_{2}}\ell_{T_{1}} & -\ell_{P_{2}}\ell_{T_{1}} & +\ell_{P_{1}}\ell_{V_{1}} \end{bmatrix} \cdot \mathbf{v}$$

$$\mathbf{v}^{T} = \begin{bmatrix} v_{P_{1}} & v_{V_{1}} & v_{P_{2}} & v_{V_{2}} & v_{T_{2}} \end{bmatrix}$$

38

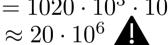
Exo 6: Gaz parfait - avec élégance!

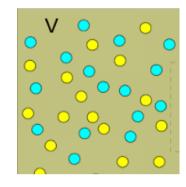
- taille dépend des unités
- notre cas *m*b, *m*l, K ... $\approx 10^3 \cdot 10^3 \cdot 10^3 = 10^9$
- dans une petite variation $= 1001 \cdot 10^3 \cdot 10^3 = 1001 \cdot 10^6$
- différence





différence





EPFL

Exo 6: Gaz parfait - avec élégance!

V

- Analogie avec la moyenne: 2 états → 5 états
 - Combien de conditions ?
 - Comment les choisir ?

$$\begin{bmatrix} \ell_1 \\ \ell_2 \\ \ell_3 \\ \ell_4 \end{bmatrix} \qquad \begin{cases} \ell_2 - \ell_1 = w_1 \\ \ell_3 - \ell_2 = w_2 \\ \ell_4 - \ell_3 = w_3 \\ \ell_5 - \ell_4 = w_4 \end{cases} \longrightarrow \mathbf{B}_I = \begin{bmatrix} -1 & 1 & \cdot & \cdot & \cdot \\ & -1 & 1 & \cdot & \cdot \\ & & -1 & 1 & \cdot \\ & & & -1 & 1 \end{bmatrix}$$

- Puis-je le faire différemment ?
- Est-ce que ça donne les écartes des fermetures différentes ?
- Est-ce que ça donne des résidus différents ?

ME 6-3: Quelques outils

- Principe des moindres carrés
 - Définition: $\mathbf{v}^T \mathbf{P} \mathbf{v} \longrightarrow \text{minimum}$
 - Exemple: la moyenne arithmétique, ${f P}={f I}$
 - Présentation empirique
 - Démonstration analytique
- Exercice 7 en autocontrôle sur Moodle
 - Dérivation matricielle
 - Développer l'expression en scalaires
 - Dériver
 - Former des vecteurs et des matrices
 - Moyenne pondérée, $P \neq I$
 - Extension de la moyenne arithmétique

ME 6

Prochaine fois: Ecarte-type a posteriori – lire Chap. 3.3